Imaging the continental upper mantle using electromagnetic methods

نویسنده

  • Alan G. Jones
چکیده

The internal structure of the continental lithosphere holds the key to its creation and development, and this internal structure can be determined using appropriate seismic and electromagnetic methods. These two are complementary in that the seismic parameters usually represent bulk properties of the rock, whereas electrical conductivity is primarily a function of the connectivity of a minor constituent of the rock matrix, such as the presence of a conducting mineral phase, e.g. carbon in graphite form, or of a fluid phase, e.g. partial melt or volatiles. In particular, conductivity is especially sensitive to the top of the asthenosphere, generally considered to be a region of interconnected partial melt. Knowledge of the geometry of the lithosphererasthenosphere boundary is important as this boundary partially controls the geodynamic processes that create, modify, and destroy the lithosphere. Accordingly, collocated seismic and electromagnetic experiments result in superior knowledge than would be obtained from using each on its own. This paper describes the state of knowledge of the continental upper mantle obtained primarily from the natural-source magnetotelluric technique, and outlines how hypotheses and models regarding the development of cratonic lithosphere can be tested using deep-probing electromagnetic surveying. The resolution properties of the method show the difficulties that can be encountered if there is conducting material in the crust. Examples of data and interpretations from various regions around the globe are discussed to demonstrate the correlation of electromagnetic and seismic observations of the lithosphere–asthenosphere boundary. Also, the observations from laboratory measurements on candidate mineralogies representative of the mantle, such as olivine, are presented. q 1999 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The initiation of segmented buoyancy-driven melting during continental breakup

Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we u...

متن کامل

Petrography, geochemistry and petrogenesis of Damavand volcano: Comparison of different volcanic generations

1-Introduction Damavand volcano was formed by explosive and non-explosive eruptions on the old eroded rock units (Mesozoic and older) of Central Alborz during the Quaternary period and formed two huge cone (Old and Young Damavand). Davidson et al. (2004) determined the time of Old-Damavand activity from 1800 to 800 thousand years ago by measuring Ar/Ar and U-Th/He methods. According to their ...

متن کامل

Relative depletion of niobium in some arc magmas and the continental crust : partitioning of K , Nb , La and Ce during melt / rock reaction in the upper mantle

Depletion of Nb relative to K and La is characteristic of lavas in subduction-related magmatic arcs, as distinct from mid-ocean ridge basalts. Nb depletion is also characteristic of the continental crust. This and other geochemical similarities between the continental crust and high-Mg# andesite magmas found in arcs suggests that the continental crust may have formed by accretion of andesites. ...

متن کامل

Imag(in)ing the continental lithosphere

This paper is primarily concerned with seismically imaging details in the mantle at an intermediate scale length between the large scales of regional and global tomography and the small scales of reflection profiles and outcrops. This range is roughly 0.1– 1 kmbab10–10 km, where a is the scale. We consider the implications of several models for mantle evolution in a convecting mantle, and possi...

متن کامل

Eocene-Oligocene volcanic units of momen abad, east of Iran: petrogenesis and magmatic evolution

This study investigates petrology and major, minor, and rare earth elements ‎geochemistry of ‎East Iranian Eocene–Oligocene volcanic rocks in Sistan suture ‎zone, to examine their ‎petrogenesis and magma evolution. The volcanic rocks include andesite, trachy-andesite, dacite ‎and rhyolite. ‎These calc-alkaline rocks of high-K series are enriched in Large ‎Ion Lithophile ‎Elements of Rb and Ba a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999